Self-Limited Self-Assembly of Chiral Filaments
نویسندگان
چکیده
منابع مشابه
Self-limited self-assembly of chiral filaments.
We discuss dynamical simulations and free energy calculations on patchy spheres with chiral pair interactions that spontaneously assemble into filamentous bundles. The chirality frustrates long-range crystal order by introducing twist between interacting subunits. For some ranges of system parameters this constraint leads to bundles with a finite diameter, and in other cases frustration is reli...
متن کاملSelf-assembly of chiral tubules.
The efficient and controlled assembly of complex structures from macromolecular building blocks is a critical open question in both biological systems and nanoscience. Using molecular dynamics simulations we study the self-assembly of tubular structures from model macromolecular monomers with multiple binding sites on their surfaces [Cheng et al., Soft Matter, 2012, 8, 5666-5678]. In this work ...
متن کاملControlling RNA self-assembly to form filaments
Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. 'RNA tectonics' is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incor...
متن کاملChiral self-assembly of helical particles.
The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Hel...
متن کاملShape selection in chiral self-assembly.
Many biological and synthetic materials self-assemble into helical or twisted aggregates. The shape is determined by a complex interplay between elastic forces and the orientation and chirality of the constituent molecules. We study this interplay through Monte Carlo simulations, with an accelerated algorithm motivated by the growth of an aggregate out of solution. The simulations show that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2010
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.104.258102